[6] Hob Erase iii (歯車電極用エンドミル歯形解析)

図 6.1 Hob Erase

6.1 概要

歯車電極用エンドミル歯形解析ソフトウェア Hob Erase iii (ホブ イレーズ)は、収縮率、放電ギャップ、圧力角補正、ねじれ角補 正を考慮し切削時の包絡線軌跡を解析したエンドミル歯形座標値 を決定するソフトウェアです、図 6.1 に、全体画面を示します、

エンドミル歯形は、歯車の歯直角断面歯形ではなく切削時の包 絡線軌跡を解析し座標値を決定しています. 平歯車の場合は、歯 車歯形とエンドミル歯形は一致しますが、はすば歯車の場合は歯 数が少ない程、また、ねじれ角が大きいほどエンドミル歯形と歯 車歯形の差は大きくなります. 歯車のインボリュート面は歯形解 析により決定し、歯底付近のフィレットカーブは創成運動に基づ いて決定していますので完全な理論歯形となります. Hob Erase iii は、インボリュート平、はすば歯車(外歯車および内歯車)に適 用します.ただし、内歯車はオプションです.

6.2 初期設定

初期設定では、①モジュール収縮率、②圧力角補正率、③ねじ れ角補正率,④放電ギャップ,⑤歯元R係数を設定します.収縮 率を考慮したモジュールを入力する場合は、収縮率に0を入力し ます.

6.3 入力項目

歯車諸元の入力は、①モジュール、②歯数、③圧力角、④ねじ れ角, ⑤転位係数, ⑥歯先円直径, ⑦歯底円直径, ⑧歯厚減少量 を入力します.

6.4 出力項目

- (1)エンドミル歯形を画面作図します.
- (2) エンドミル歯形座標値を表示します. (円弧補間座標値)
- (3) 歯形 DXF ファイルを出力します.

理論座標値を 0.5µm の精度で円弧補間データに変換します. (4) 諸元を印刷します.

- (5) 歯形図を印刷します.
- (6) 設計データの登録(読込み)をします.

6.5 エンドミル加工による歯形試験結果例

図 6.2 の歯形試験結果1は、収縮率=2%、圧力角補正=0、ねじ れ角補正=0 としてエンドミルの刃形をHob Eraseで歯形を決め製 作した歯車の検査結果を示します.図 6.3 の歯形試験結果 2 は, 相当平歯車歯形をエンドミルの刃形として製作した歯車の検査結 果を示します.

A	· · · · · · · · · · · · · · · · · · ·	1) <u>+</u>	1 ···
the second	it i managed	15 11 + man	is +
it a property	sh	1h	*
J	Je :	U1	U +
J. 1 ++1	J	B1 +	B1 11 +
31 1 +	Ja ,	Da 11 +	3
·** · · · · · · · · · · · · · · · · · ·	n . ++	In II the second	in
4 · · · · · · · · · · · · · · · · · · ·	st, ,	Br +	Bi
sh	J1	Be	W "
·····	··· ·· ······	· Ha	· 14 · 10
	11h -1 -++-	·13: 11	·B, •
	where a commentation of the second	· · · · · · · · · · · · · · · · · · ·	the street
1)h	us :		· !!
Ruk + +	*** :+1		
	*** *	*** *	***
図 6.2 歯	形試験結果1	図 6.3 歯	形試験結果2

[7] Differential change gear calculation system (有理数分解)

							8	39	HFA.	5					
	722月	N	22						模	в		200	44.62	\$2. 30	
		111				e Bellon II.	_			NUR:		Auto		- 4	
	P2 *	1100				AND NO			- 82.7	C225K		Dece		30	
	_	_				- a at 100	_		\$63	9-F		9Z	-	3,34667890	
	*	8		22	#42	8.4			23	16 9 -	_	R	「「などの主ない		
		1.1		-	-					.12	*	_	.1216	_ R 2	
	- 42	7445		12		10 N I 44 0 10	-	1	×	Ξ.	30	× 21	6.1462012		128
	- 14	11.0		-		1 INTERE		0	×		d1 (X 18			
	74	0.9		- 8	424031100	国際部分学会会な	e i	85.			κ		计算法	K &	
		#22	at i		217230	1 8		1.1	21	6	24	27	3.3459790109	C.CCCCCC1123	1
1	×		75	× 20				1	24	и	11	27	3,3430700120	0.000001123	
					1.1011013	a	11	1.2	28	6	28	36	L PISCHOOL	1,0000022	
- 10 A				1.00				4	28	54	31	90	3.3459790108	C.00001123	
80		в	c	B	1130.00	8.8	- Al-	1	29	11	26	27	3.1450790129	C.CCCCCC1123	
- 12	21	10	24	26	N.157054CKE	0.0000353		1	28	-11	21	21	1.16620123	1.0000022	
- H-	21	20	24	00	3, 1270347060	0.0001113533		1.2	28	ы	55	88	3.3478780108	C.00001123	
	21	10	24	28	3,1570541366	0.00000553		1	28	33	22	22	3,3458290129	0.000001122	
	a	- 11	11	18	1.15/304/046	Cumma		1.1	28	13	22	27	1.1455730123	COUNTRY	
- H- Y	24	0	11	44,	2.120394/341	c.uumm		H.	28	34	54	88	3.3478780128	C.00001123	
1	24	11	24	28	\$ SUDJECT	1.000050		11	28	22	54	28	1.1468290129	0.000001123	
2	24	35	28	22	3,1578545368	0.00000533		12	29	73	12	27	3.1455730120	0.000001123	
1	24	22	- 11	66	7.15584566	0.0000533		R	28	34	56	88	3.3438780128	C.000001123	
	24	24	23	10	PRODUCTE.	1.000050		R.	28	21	24	28	1.06620023	1,00001221	1.
_							_					11. 22	Acres have		

図 7.1 有理数分解(差動換え歯車)

7.1 概要

- (1) 有理数分解ソフトウェアは、小数点数値を2種類の分数に分 解するソフトウェアです. 全体画面を図 7.1 に示します.
- (2) 分数に分解する数値は、図 7.2 のように小数点数値を直接入 力する方法とホブ盤を登録(名称,定数,歯数最大,歯数最小) し、モジュール、ねじれ角を入力して計算する2種類の方法が あります. 図7.3 にホブ盤の登録例を示します.
- (3) 分解精度は、小数点以下6桁以上の精度で歯数の組み合わせ 全てを表示します.また、図7.2のように同歯数を含まない表 示とすることもできます.
- (4) 減速歯車の歯数決定にも使用することができます.

図 7.3 ホブ盤登録の例

[8] Tooth thickness converter (転位歯厚変換)

図 8.1 転位歯厚変換

8.1 概要

転位歯厚変換 (図 8.1)は、歯厚と転位係数の関係を計算するソフトウェアです。

- (1) 歯車の種類:インボリュート歯車(外歯車, 内歯車)
- (2)使用するピン(ボール)を歯形上に作図しますのでスプラインなどの歯たけが低い歯形には、Dカットピンの使用限界を知ることができます(図84および図8.5参照).
- (3) またぎ歯厚,オーバーピン寸法,弦歯厚の変化量そしてホブ の追い込み量の関係を計算します.

8.2 歯車諸元入力

モジュール,歯数,圧力角,ねじれ角を入力し,歯厚は,①転 位係数,②またぎ歯厚,③オーバーボール寸法,④円弧歯厚の4 種類あります.ここでは図8.2のようにオーバーボール寸法を基 準に計算する例を示します.歯先円直径,歯底円直径は並歯の標 準値が入力されますが,変更は可能です.諸元入力後,[確定]で 図8.3の寸法結果を表示します.

🕅 歯車諸元			- • 💌	
歯車の種類	Ð		外歯車 🗸	
項目	記号	単位	數 値	
モジュール	mn	mm	3.00000	
歯 数	z		20	
圧力角	αn	deg	20.00000 *	
ねじれ角	β	deg	30 * 0 ' 0.00 "	
ねじれ方向			右ねじれ 🗸	
基準円直径	d	mm	69.2820	
歯厚入力方式			オーバーボール寸法 👡	
転位係数	×n		0.59960	
またぎ歯数	ZM		4	
またぎ歯厚	W	mm	33.49153	たが、赤い寸法
測定が引径	dp	mm	6.00000	転位係数
オーバーボール寸法	dm	mm	82.00000	またき曲厚
歯直角円弧歯厚	Sn	mm	6.02180	歯直角円弧歯厚
基礎円直径	db	mm	63.8705	
歯先円直径	da	mm	78.8796	
歯底円直径	df	mm	65.3796	
歯幅	Ь	mm	30.0000	
歯先R	ra	mm	0.3000	
基準ラック歯元R	rf	mm	1.1250	
	確定	*	キャンセル クリア	

図 8.2 諸元

🕅 歯車寸法	- • •		
項目	記号	単位	数 値
正面圧力角	αt	deg	22.79588
リード	ΡZ	mm	376.99112
転位量	×m	mm	1.79880
歯末のたけ	ha	mm	4.79878
歯元のたけ	hf	mm	1.95122
全歯たけ	h	mm	6.75000
基礎円筒ねじれ角	βb	deg	28.02432
歯先円筒ねじれ角	βa	deg	33.31812
キャリバ歯たけ	hj	mm	4.89689
キャリバ歯厚	sj	mm	6.01754
正面またぎ歯厚	Wa	mm	37.94008
正面円弧歯厚	St	mm	6.95339
正面歯溝円弧歯厚	Ut	mm	3.92941
歯直角歯溝円弧歯厚	Un	mm	3.40298
正面モジュール	mt	mm	3.46410
正面転位係数	×t		0.51927

図 8.3 寸法結果

8.3 2D 歯形図

図 8.4 に歯形と測定ボールの位置を示します. 図 8.4(a)は図 8.2 の歯車ですが, 図 8.4(b)は内歯車の例を示します.

8.4 レンダリング

図8.5に3次元歯形と測定ボールの位置を示します.

8.5 歯厚変化

図 8.6 のように、またぎ歯厚、オーバーピン寸法、弦歯厚変化 量のうちいずれか1種類を入力することにより他の2種類の歯厚 変化量とホブ追い込み量を表示します.

🕅 歯厚変化 📃 🖻 💌									
項目	記号	敖値(下限)	敖値(上限)						
またぎ歯厚変化量	81	0.10000	0.20000						
設計またぎ歯厚	W	33.59154	33.69154						
オーバーボール寸法変化量	∂dm	0.20834	0.41534						
設計オーバーボール寸法	dm	82.20836	82.41536						
弦歯厚変化量	∂Sj	0.12230	0.24490						
設計弦歯厚	Sj	6.13984	6.26244						
ホブ追い込み変化量	δH	0.14619	0.29238						
*刀期値 キャンセル									

図 8.6 歯厚変化